December 2014

자연과학 논문집 vol. 20, no.1, pp. 5-8 (2014) Kyung Hee Journal of Natural Sciences

가시광선 영역에서 동작하는 다중코어 단일 모드 폴리머 광섬유 설계

김정제¹, 이광조^{1,2,*}

¹경희대학교 응용물리학과, ²경희대학교 자연과학종합연구원

Multi-core single mode polymer fiber operating in the visible spectral range

Jeongje Kim¹ and Kwang Jo Lee^{1,2,*}

¹Department of Applied Physics, Kyung Hee University, Yongin 446-701 ²Institute of Natural Sciences, Kyung Hee University, Yongin 446-701

요 약 - 가시광선 영역에서 동작하는 다중 코어 폴리머 단일 모드 광섬유를 설계하고 그 성능을 분석하였다. 광섬유 코어에는 Zeonex 480R 폴리머 멀티 구조를, 클래딩에는 PMMA 폴리머를 사용하였다. 다중극 전산모사 방법으로 광섬유 기본 모드의 전기장 분 포와 모드 굴절률의 분산 특성을 계산하였으며, 그 결과를 일반적인 계단식 굴절률 분포 를 가지는 단일 코어 광섬유의 경우와 비교하였다. 설계된 광섬유는 향후 광바이오 센싱 등의 분야에 응용이 기대된다.

ABSTRACT - We designed a novel multi-core single mode polymer fiber operating in the visible spectral range. Two kinds of polymers - Zeonex 480R for micro-structured multi-core and poly-(methyl methacrylate) (PMMA) for cladding - are employed for the proposed fiber structure. The modal field profiles and their dispersion properties are numerically simulated using the multi-pole method, and the results are compared with the case of a typical step-index fiber comprising a single Zeonex 480R core in PMMA background. The designed fiber has a promising potential for bio-sensing applications.

주 제 어 - 미세구조 광섬유, 폴리머, 바이오 센싱 Keywords - Micro-structured fibers, polymers, bio-sensing

1. 서론

단일 모드 광섬유는 광통신을 비롯하여, 광센서, 광섬유 레이저 개발 등에 응용이 되 는 가장 기본적인 형태의 광섬유이다. 특히 대용량 데이터 전송이나 고출력 광섬유 레이 저에 응용하기 위한 광섬유는 코어의 크기가 클수록 유리한데, 이는 광섬유의 모드 면적 이 넓을수록 고출력에 의한 광섬유 손상이 적고, 또한 비선형 광학 현상에 의한 노이즈 신호가 적게 발생하기 때문이다. 그리고 광 섬유 모드는 그 면적이 넓을수록 다루기가 보다 쉽기 때문에, 광섬유를 통해 전송되는 레이저 광신호를 제어하는 데에 있어서 보다 유리하다.¹

단일 모드 상태를 유지하면서 광섬유의 모

김정제 · 이광조

드를 넓게 만들기 위해서는 광섬유 코어와 클래딩의 굴절률 차이를 작게 만들어야 하지 만, 실제로는 광섬유에 사용할 수 있는 물질 들의 종류가 제한되어 있기 때문에 이 방법 으로는 광섬유의 모드 면적을 넓게 하는 데 에 한계가 있다. 이를 극복하기 위해 다중코 어 구조가 제안되었으며, 이 구조에서는 작 은 두께의 코어를 통해 진행하는 레이저 빛 이 각각 합쳐져서 넓은 유효 모드 면적을 이 루게 된다.²

본 논문에서는 가시광선 영역에서 동작하 는 폴리머 광섬유를 멀티 코어 구조로 구현 하고자 한다. 설계한 광섬유에 사용할 폴리 머 물질은, 다중 코어 부분에 Zeonex 480R (Zeon Chemicals, ZX), 클래딩 부분에 poly-(methyl methacrylate) (이하 PMMA) 이다. 광섬유 모드의 전기장 분포와 파장에 대한 모드 굴절률 변화는 다중극 전산모사 방법으로 수치 계산을 할 것이며,³ 계산 결 과를 일반적인 계단식 굴절률 분포를 가지는 단일 모드 광섬유의 경우와 비교할 것이다. 폴리머 광섬유는 유리 광섬유에 비해 깨짐이 적고 상대적으로 부드러워 바이오 센싱 등의 응용에 있어서 보다 안전하다는 장점이 있 다. 또한 가시광선 영역에서의 투과성이 좋 기 때문에, 헬륨-네온 레이저처럼 값이 저렴 하고 다루기가 쉬운 가시광선 레이저를 이용 한 센서 개발이 용이하다.4

2. 광섬유 설계 및 성능 분석

그림 1은 설계한 멀티코어 광섬유의 단면 구조를 나타낸다. 7개의 ZX 막대는 PMMA 내부에 6각 대칭성을 가지고 배열이 되어 있 으며, 막대의 지름(d)은 0.2 µm, 각 막대들 의 중심 간 거리(A)는 (a) 0.2 µm, (b) 0.3 µm, 그리고 (c) 0.4 µm 이다. 이때 막대의 지름과 중심 간의 거리 사이의 비는 각각 d/A = 1, 0.67, 그리고 0.5가 된다.

그림 1. 디자인된 ZX-PMMA 폴리머 미세 구조 다중 코어 광섬유의 구조.

디자인한 미세 구조의 전반적인 크기 차원 은 가시광선 영역이자 가장 흔히 사용되는 헬륨-네온 레이저의 파장인 632.8 nm를 기 준으로 정하였다. 이 파장에서 ZX와 PMMA 의 굴절률은 각각 1.523과 1.490이며 약 2.18%의 큰 굴절률 차이를 가진다. 또한 막 대의 개수가 많아지면 단일 모드를 만들기 위한 각각의 막대의 두께가 더 얇아져서 광 섬유 제작에 어려움이 생길 수 있으므로, 본 연구에서는 6각 대칭 구조에서 가장 간단한 경우인 7개의 막대 구조(1 고리 구조)를 선 택하였다.

그림 2. d/Λ = 1인 경우. (a) 기본 모드의 세기 분포, (b) E_z (x편광), (c) E_z (y편광).

그림 3. d/A = 0.67인 경우. (a) 모드세 기, (b) E_z (x편광), (c) E_z (y편광).

가시광선 영역에서 동작하는 다중코어 단일 모드 폴리머 광섬유 설계

그림 4. d/Λ = 0.5인 경우. (a) 모드세기, (b) E_z (x편광), (c) E_z (y편광).

그림 2에서 그림 4까지는 설계한 광섬유 구조에서 다중극 전개 방식으로 계산한 기본 모드 (LP01)의 모습을 나타낸다. 그림에서 보 이는 바와 같이, ZX 막대들의 사이의 거리 가 멀어질수록 모드의 면적이 넓어지는 것을 알 수가 있다. 이 결과를 일반적인 단일 모 드 광섬유, 즉 계단식 굴절률 분포를 가지는 단일 코어 광섬유와 비교하기 위하여, 역시 632.8 nm에서 동작하는 단일 모드 광섬유 의 경우를 계산하였다. 그 결과는 그림 5에 나타나 있다. 계단식 굴절률 분포를 가지는 경우에는, 코어와 클래딩 사이의 굴절률 차 이가 2.18%로 매우 크기 때문에 모드의 에 너지가 보다 코어 주변에 집중이 된다. 계산 된 모드의 면적은 아래 표 1에 정리되어 있 다. d/Λ = 0.5인 경우의 모드 면적은 단일 코어의 경우에 비해 약 18.6배 정도 더 증가 하는 것을 알 수 있다. 다중 코어와 단일 코 어 광섬유에서 나타나는 기본 모드의 면적들 은 그림 6에서 잘 비교되어 있다. 그림에서 보이듯이, d/Λ 값이 작을수록 모드의 면적 이 넓어지지만, 이 값이 어느 한계보다 작아 지게 되면 코어의 유효 크기가 넓어지게 되 어 역시 다중 모드 특성이 나타나게 된다. 단일 모드가 구현되기 위한 d/Λ의 최소값 은, 광섬유를 구성하는 물질의 굴절률에 의 해 결정된다.

그림 5. 일반적인 계단식 굴절률 단일 코 어 광섬유인 경우. 632.8 nm에서 코어 반 지름은 0.67 μm. (a) 모드세기, (b) E_z (x 편광), (c) E_z (y편광).

d/A	A_{eff} [μm^2]
Step-index core	2.17
1.00	19.74
0.67	32.29
0.50	42.51

표 1. d/Λ에 따른 기본 모드의 유효 면적 변화

그림 6. 다중 코어와 단일 코어 광섬유에 서, 나타나는 기본 모드 면적 비교.

그림 7. 가시광선 영역에서의 광섬유 기본 모드들의 굴절률 분산 특성.

그림 7은 다중극 전개 방법으로 계산한 광 섬유 기본 모드의 굴절률 분산 곡선을 나타 낸다. 본 논문에서 고려하고 있는 광섬유는 가시광선 영역에서 적합하게 동작하도록 설 계하였으므로, 분산 특성도 가시광선 영역에 서 분석을 하였다. 그림에 나타난 바와 같 이, 단일 코어의 경우가 모드 크기가 작기 때문에 모드의 에너지가 코어 부분에 더 많 이 분포하게 되며 (그림 5), 따라서 모드의 굴절률도 ZX의 굴절률 값에 가까운 더 큰 값을 가지게 된다. 하지만 다중 코어의 경우 에는 모드의 면적이 크기 때문에, 단일 코어 에 비해 상대적으로 더 바깥쪽의 클래딩 부 분에까지 모드 에너지가 퍼져 있으며 (그림 2 - 그림 4), 따라서 모드의 굴절률도 보다 PMMA 클래딩의 굴절률 값에 가까운 값을 가지게 된다. 그림 7에 나타난 바와 같이, 이러한 경향은 장파장 영역에서 더 두드러지 게 나타나며(> 약 0.65 µm), 단파장 영역으 로 갈수록 d/Λ 값에 따라 모드 굴절률의 크 기가 달라지는 정도가 더 뚜렷해진다(< 약 0.50 µm). 이것은 단파장 영역으로 갈수록 빛의 파장이 코어의 미세 구조의 크기와 점 점 비슷해지므로, 모드 특성이 다중 코어 구 조에 영향을 더 많이 받기 때문이다. 계산 결과는 본 논문에서 설계한 광섬유가 가시광 선 전 영역에서 잘 동작하며, 단일 코어 광 섬유의 경우에 비해 더 넓은 모드 면적을 가 진다는 것을 잘 보여준다.

3. 결론

본 연구에서는 가시광선 영역에서 동작하 는 다중 코어 광섬유를 설계하고, 이때 나타 나는 광섬유의 모드 특성과 모드 굴절률의 분산 특성을 수치계산을 통해 조사하였다. 광섬유 구성 물질로는, 가시광선에서 투과성 이 높고 실리카 유리에 비해 상대적으로 안 전한 물질인 ZX와 PMMA 폴리머를 각각 광 섬유의 미세구조 다중 코어와 클래딩으로 고 려하였으며, 계산 결과 설계된 광섬유는 단 일 코어 구조의 광섬유에 비해 약 18.6 배의 넓은 모드 면적을 나타내었다. 본 연구에서 설계한 광섬유는 가시광선 영역에서 동작하 며, 흔히 사용되는 He-Ne 레이저나 레이저 포인터 등에 사용되는 붉은색(633 nm) 또는 녹색(532 nm)의 레이저 다이오드를 이용한 실험이 가능하다. 광섬유의 모드 면적이 넓 기 때문에, 이를 이용한 광섬유 결합기 등 외부 굴절률 변화를 측정하는 방식을 사용하 는 센서 분야에 대한 응용성이 클 것으로 기 대된다.

참고문헌

- Vogel, M. M.; Abdou-Ahmed, M.; Voss, A.; Graf, T. *Opt. Lett.* 2009, 34, 2876.
- Leon-Saval, S. G.; Lwin, R.; Argyros,
 A. Opt. Express 2012, 20, 141.
- Kuhlmey, B. T.; White, T. P.; Renversez, G.; Maystre, D.; Botten, L. C.; de Sterke, C. M.; McPhedran, R. C. *J. Opt. Soc. Am. B* 2002, 19, 2331.
- Lee, K. J.; Liu, X.; Vuillemin, N.; Lwin, R.; Leon-Saval, S. G.; Argyros, A.; Kuhlmey, B. T. *Opt. Express* 2014, 22, 17497.