December 2017

자연과학 논문집 vol. 23, no.1, pp. 11-15 (2017) Kyung Hee Journal of Natural Sciences

소멸파 결합 방법을 이용한 광섬유의 모드 굴절률 측정

김채린¹, 이동화¹, 김융¹, 이광조^{1,2,*}

¹경희대학교 응용물리학과, ²경희대학교 자연과학종합연구원

Measurement of Effective Indices of Optical Fiber Modes Based On Evanescent Coupling Method

Chaelin Kim¹, Dongwha Lee¹, Yung Kim¹, and Kwang Jo Lee^{1,2,*}

¹Department of Applied Physics, Kyung Hee University, Yongin 17104 ²Institute of Natural Sciences, Kyung Hee University, Yongin 17104

요 약 - 광섬유에 존재하는 여러 가지 다중 모드들의 굴절률을 프리즘을 이용한 소멸파 결합 방법으로 직접 측정하고, 다중-극 전개 방법으로 계산한 모드 굴절률과 비교하였다.

ABSTRACT - We measured the modal refractive indices of an multi-mode optical fiber using evanescent coupling method. The results are compared with the simulation results computed with the multi-pole expansion method.

주 제 어 - 측면-연마 광섬유, 프리즘 커플링, 모드 굴절률, 도파로 광학, 광섬유 광학 Keywords - Side-Polished Fiber, Prism Coupling, Modal Refractive Index, Waveguide Optics, Fiber Optics

1. 서론

오늘날 광섬유는 통신 분야를 비롯하여 센서의 제작 등 광범위한 분야에서 사용되고 있다.¹ 이를 위해서 다양한 종류의 광섬유들이 개발되어 왔는 데, 제작된 광섬유가 설계한 성능과 부합하는지 확 인하거나 제작된 광섬유를 이용한 광시스템을 제작 하기 위해서는 광섬유에 대한 정확한 정보를 실험 을 통해 직접 측정할 필요가 있다. 이러한 광섬유의 파라미터를 정확하게 측정할 수 있는 시스템 중 하 나로서 측면-연마 광섬유(Side-Polished Fiber)를 이용하여 제작하는 프리즘 커플러가 잘 알려져 있 다.¹ 측면-연마 광섬유는 클래딩의 일부가 연마 (Polishing) 등의 과정을 통해 손실된 광섬유이다.² 따라서 소멸파(Evanescent Field)의 일부가 커플링 되어 광섬유의 외부에서 관찰되므로, 이 빛을 이용 하여 광섬유 내에서 진행하는 빛의 다양한 특성을 측정할 수 있다. 이를 이용한 측정 시스템의 장점은 오직 클래딩에 존재하는 파만을 이용하기 때문에 코어 내부에서 진행하는 빛에 영향을 주지 않을 수 있다는 것이다.² 또한, 본 측정 시스템을 이용하는 것은 모드의 파라미터를 가장 간단하면서도 정확하 게 측정할 수 있는 분석법 중 하나라는 점에서 의 의를 가진다.

본 논문에서는 측면-연마 광섬유와, 이를 이용한

광섬유 내에 진행하는 빛의 모드 굴절률 측정을 소 개할 것이다. 또한 이를 다중-극 전개 방법으로 계 산한 결과와 비교하여 그 정확성을 확인할 것이다.

2. 측면-연마 광섬유(Side-Polished Fiber)

측면-연마 광섬유란, 클래딩의 일부를 코어 방향 으로 제거한 광섬유를 말한다.² 이 제거 작업은 일 반적으로 물리 및 화학적인 연마에 의해 이루어진 다. 일반적인 광섬유는 매우 얇은 굵기를 갖고 있 다. SMF-28 광섬유 역시 코어의 지름이 8.2 µm, 클래딩 지름이 245 µm로 얇기 때문에, 클래딩의 일부를 균일하게 연마하는 것은 쉽지 않다. 따라서 그림 1과 같이 유리로 만든 블록에 V-모양의 홈을 파고, 여기에 광섬유를 고정시켜 블록과 광섬유의 일부를 함께 연마하는 방법을 사용해야 한다.² 본 실험에서는 석영 유리로 만든 블록을 사용하였다.

광섬유 내에서 전반사가 일어날 때, 전자기파의 파동적인 성질로 인해 클래딩 내에 지수적으로 크 기가 감소하는 전기장이 존재하며, 이를 소멸파라 고 한다.³ 일반적으로 클래딩이 손상되지 않은 광 섬유의 외부에서는 소멸파가 관찰될 수 없지만, 그 림 2와 같이 측면-연마 광섬유의 경우 손상된 클 래딩 표면에서의 소멸파 결합을 통해 소멸파를 외 부에서 관찰하는 것이 가능하다.

본 실험에서는 SMF-28 광섬유를 석영 블록에 고정시켜 측면-연마 광섬유를 제작하고, 이를 레이 저 빛을 입사시키기 용이하도록 제작된 동종 광섬 유에 접합시켜 사용한다. 레이저 광원에서 나오는 빛은 광섬유 전체를 따라 도파하고, 그 중 연마된 클래딩 면에서 나오는 소멸파의 일부를 이용하여 도파하는 빛들의 모드 유효 굴절률을 측정한다. 소 멸파는 전반사가 일어날 때 관찰되는 현상이므로 그 세기는 0 이다.³ 즉, 코어 내에서 진행하는 빛 과 파워를 나누지 않는다. 따라서 본 방법을 이용 한다면 광섬유 내에서 진행하는 빛에 큰 영향을 끼 치지 않은 채로 빛의 특성을 관찰하여 여러 가지 파라미터를 측정할 수 있다. **그림 3**은 제작된 측면 -연마 광섬유의 모습을 나타낸다.

그림 2. 측면-연마 광섬유의 3차원 모식도

그림 3. 제작된 측면-연마 광섬유

3. 다중-극 전개방법에 의한 시뮬레이션

본 실험에서 사용한 SMF-28 광섬유의 개구수 (N.A.)는 1310 nm에서 0.14이며, 코어의 반지름은 4.10 µm이다.⁵ 또, 사용한 레이저 광원의 파장은 650 nm이다.⁶ 따라서 V-수를 계산하면 아래와 같 다.³

$$V = k_0 a(\text{N.A.}) = \frac{2\pi}{\lambda} a(\text{N.A.})$$

= $\frac{2 \cdot \pi}{0.65 \mu \text{m}} \cdot (4.10 \mu \text{m}) \cdot (0.14) = 5.549$ (1)

계산한 V-수를 이용하여 모드의 개수를 예측할 수 있는데, **그림 4**로부터 위 조건에서 광섬유를 진행 하는 선형편광(LP) 모드는 LP₀₁, LP₁₁, LP₂₁, LP₀₂, LP₃₁, LP₁₂로 총 6개라는 것을 알 수 있다.⁴

한편, 선형편광 모드는 트루모드인 TE모드, TM 모드, HE모드, EH모드의 선형 결합이다.⁴ 또한 고 차 모드로 갈수록 빛의 세기가 약해져 잘 관찰되지 않는 경우가 많다. 따라서 본 실험에서는 실험 결 과 관찰될 것으로 예상되는 여섯 개의 저차 트루모 드에 관해서만 다중-극 전개 방법을 이용하여 시 뮬레이션 하였다.

다중-극 전개 방법이란, 각도에 대해 다중 대칭 성을 가지는 광섬유 구조를 그 대칭성에 맞게 여러 개의 극으로 전개하고, 나누어진 극에 대해 광섬유 를 따라 진행하는 빛의 벡터 장 성분을 계산하는 방법이다.⁷ CUDOS MOF라는 프로그램을 사용하여 다중-극 전개 방법을 이용하면 광섬유를 따라 진 행하는 모드 분포와 분산 특성을 그래프로 그려서 얻을 수 있으며, 각 모드의 유효 굴절률을 계산할 수 있다.⁷

SMF-28 광섬유에 650 nm의 빛이 진행할 경우 에 대한 시뮬레이션 결과를 아래 표 1에 정리하였 다. 각 모드는 서로 다른 크기의 전기장 분포를 가 지며, 따라서 서로 다른 유효 굴절률을 가진다.

다만 **표** 1의 결과는 650 nm가 아닌 1310 nm 에서의 SMF-28의 개구수를 기반으로 한 것이므로 광섬유에 대한 정확한 정보를 알 수 있다면 더욱 정확한 결과를 얻을 수 있을 것이다.

4. 프리즘 커플링을 이용한 모드 굴절률 측정

이어지는 실험은 프리즘을 이용하여 측면-연마 광섬유에서 나오는 소멸파를 커플링 하는 것이다. 광섬유가 고정되어있는 석영 블록 위에 굴절률 정 합액(Index Matching Gel)을 도포하고 사다리꼴 프리즘을 위치시켰다. 굴절률 정합액은 프리즘과 석영 블록 사이에 존재할 수 있는 공기층을 방지하 는 역할을 한다.² 사용한 굴절률 정합액의 종류는 Thorlabs사의 G608N으로 굴절률은 1.456이며⁸, 프리즘의 경우 아크릴 재질로 이루어져 있어 굴절 률이 1.49이다. 두 물질의 굴절률 차이는 2.282% 로, 프리즘과의 굴절률 차이가 더욱 적거나 없는 굴절률 정합액을 사용한다면 오차를 줄일 수 있을 것이다. 또한, 빛이 잘 커플링 되기 위해서는 광섬 유의 코어와 프리즘의 굴절률이 같거나 비슷할수록 좋다.¹

광섬유 내에 도파된 모드들의 유효 굴절률이 모 두 다르기 때문에 각 모드가 프리즘에 의하여 굴절 되는 정도 역시 모두 다르다. 따라서 각 모드는 스 크린 상의 서로 다른 곳에 상을 맺을 것이다. 이를 이용하여 각각의 모드 굴절률을 측정할 수 있다. 그 계산법은 아래의 식을 따르는데,¹

$$n_e = (n_p^2 - \sin^2 \theta)^{1/2}$$
 (2)

 n_e 는 모드 굴절률, n_p 는 프리즘의 굴절률, θ 는 빛

모드	TE04	HE14	EH15	HE17	HE24	HE34
전기장의 Norm Profile	0		0	\bigcirc	0	•
유효굴절률	1.45684	1.45645	1.45690	1.46002	1.45863	1.45690

표 1. SMF-28 광섬유에 650 nm의 빛이 진행할 경우 생기는 6개의 저차 모드에 관한 시뮬레이션 결과

김채린 · 이동화 · 김융 · 이광조

과 수평면 사이의 각도를 의미한다.¹ 즉, *θ*의 크기 가 작을수록 모드 굴절률이 크며, *θ*의 크기가 클수 록 모드 굴절률이 작다는 것을 알 수 있다. 또한, 따라서 모드 굴절률이 작을수록 스크린에 맺힌 빛 이 굽어지는 정도가 클 것이고, 모드 굴절률이 클 수록 빛이 굽어지는 정도가 작을 것이다.

그림 5. 실험 장치 구성 모식도

그림 6. 실제 실험 장치 구성 사진

그림 5와 그림 6은 각각 실험장치 모식도와 실제 실험 셋업을 나타낸다. 본 실험에서는 사다리꼴 프 리즘을 사용하였는데, 높이가 높은 쪽이 스크린을 향하고 있으며, 이곳과 스크린 사이의 간격은 123 cm 이다. 따라서 높이를 측정하면 삼각함수 사이

의 관계를 이용하여 θ의 크기를 구할 수 있고, 프 리즘의 굴절률도 알고 있으므로 식(1)을 이용하여 모드의 유효 굴절률을 계산할 수 있다.

그림 7. 석영 블록 위에 굴절률 정 합액을 도포하고 사다리꼴 프리즘을 얹은 모습

그림 8. 스크린 위에 맺힌 상의 모습

그림 7은 석영 블록 위에 굴절률 정합액을 도포 하고 사다리꼴 프리즘을 얹은 모습이며, 레이저의

	유효 굴절률	해당될 것으로 예상되는 모드	Simulation 결과와의 오차율
(a)	1.460182	HE17	HE17 : 0.0109%
(b)	1.458584	TE04 + HE24	TE04 : 0.0036% HE24 : 0.0034%
(c)	1.456807	EH15 또는 EH15 + HE34	EH15 : 0.0066% HE34 : 0.0064%

표 2. 유효 굴절률 계산 결과와 해당될 것으로 예상되는 모드

전원을 켜자 **그림 8**과 같이 스크린 위에 육안 상 으로 세 개의 모드가 상을 맺었다. 가장 아래에서 부터 세 층의 빛이 정상적인 모드이다. 가장 위에 존재하는 동그란 모양의 상은 모드라고 볼 수 없으 며, 간섭 등에 의한 노이즈라고 할 수 있다.

바닥에서부터 모드의 가운데 지점까지 높이를 측 정하고 θ와 n_e를 계산한 결과는 표 2와 같다. 가 장 아래에 있는 모드를 (a), 가운데의 모드를 (b), 그리고 가장 위에 있는 모드를 (c)라고 하였다. 계 산한 유효 굴절률을 시뮬레이션 결과와 비교하여 해당되는 모드를 예상하였는데, 여섯 개의 모드가 관찰될 것이라고 가정하고 시뮬레이션 한 것과는 달리 가장 고차 모드인 HE14 모드는 관찰되지 않 고 최대 다섯 개의 모드만이 관찰되었다. 해당될 것으로 예상되는 모드가 (a)의 경우 한 개이지만 (b) 와 (c)의 경우 두 개의 모드일 것이라고 결론지은 이유는 TE04와 HE24, EH15와 HE34 사이의 유효 굴절률 차이가 각각 0.01% 미만으로 아주 작았으 며, (c)에 해당하는 EH15 모드가 관찰되기 위해서 는 그보다 저차모드인 HE24모드가 반드시 관찰되 어야 하기 때문이다. 즉, θ 의 차이가 아주 미묘하 여 두 개의 모드가 겹쳐있을 가능성이 있는 것이 다. 그러나 HE34 모드의 경우 다섯 개의 모드 중 가장 고차모드에 해당하기 때문에 (c)는 한 개의 모 드일 가능성과, 두 개의 모드가 겹쳐있을 가능성이 모두 존재한다.

측정 결과와 시뮬레이션 결과의 오차율은 최대 0.0109%에서 최소 0.0036%로 실험 결과가 매우 정확한 수준이라는 것을 알 수 있다.

다만 사용한 레이저의 파장은 실험 환경 온도에 따라 약 20 nm까지의 오차를 가진다.⁷ 따라서 이 에 대한 정확한 정보가 있다면 더욱 더 정확한 결 과를 얻을 수 있을 것이다. 또, 본 실험에서와 같 이 모드 간의 유효굴절률 차이가 작을 경우 굴절률 이 큰 프리즘을 쓴다면 각 모드 사이의 각도가 더 욱 커질 것이므로 실험 결과를 얻는데 있어 용이할 것이다.

5. 결론

본 연구에서는 소멸장 커플링 방법을 이용하여

광섬유 내에 진행하는 각 모드의 유효 굴절률을 계 산하고 이를 다중-극 전개방법에 의한 시뮬레이션 결과와 비교하였다. 실험 결과, 최대 다섯 개의 모 드가 관찰되었으며 이를 시뮬레이션 결과와 비교하 였을 때의 오차율은 최소 0.0036%, 최대 0.0109% 이었다. 이 결과는 본 기법을 이용한 모드 굴절률 의 측정을 신뢰할 수 있음을 의미한다. 향후 실험 환경에 대한 정확한 온도 정보를 사용하여 계산하 고, 프리즘의 굴절률과 같은 굴절률을 가지는 정합 액을 사용한다면 더욱 정확한 결과를 얻을 수 있을 것이다. 이와 같이 측면-연마 광섬유를 이용하면 모드 굴절률 이외에도 Beat Length, Phase Velocity, Cutoff Wavelength 등의 물리량을 정 확하게 측정할 수 있으며¹, 나아가 고감도의 가스 감지 센서, 고감도의 온도 감지 센서 등을 설계할 수 있다^{9,10}.

참고문헌

- W. V. Sorin, B. Y. Kim, H. J. Shaw, Opt. Lett., 11 (1986).
- S.-M. Tseng, C.-L. Chen, App. Opt., 31 (1992).
- S. O. Kasap, *Optoelectronics and Photonics* 2nd ed. (Pearson Education 2013).
- A. Yariv, P. Yeh, *Photonics* 6th ed. (Oxford University Press 2007).
- 5. Corning[®] SMF-28[®] Optical Fiber Product Information <u>https://www.corning.com/media/worldwide/coc</u> /documents/Fiber/SMF-28%20Ultra.pdf
- 6. Grandway LD VLS-6
- 7. S. Y. Hwang and K. J. Lee, *Kyung Hee Journal of Natural Sciences*, **22** (2016).
- 8. Thorlabs G608N Index Matching Gel Spec Sheet
- M. R. R. Khan and S. W. Kang, Sensors, 14 (2014).
- 10. M. R. R. Khan and S. W. Kang, Sensors, 16 (2016).